
Plexippus XPath

May 16, 2008

Contents

1 The xpath package 2

1.1 Using XPath . 2

1.2 Compiling XPath dynamically . 3

1.3 Type coercion . 5

1.4 The dynamic environment . 7

1.5 The run-time context . 8

1.6 Node sets . 11

1.7 Miscellaneous . 17

1.8 Other functions . 19

1.9 Other classes . 20

1.10 Other variables . 20

2 The xpath-sys package 21

2.1 Pipes . 21

2.2 Node sets . 23

2.3 Implementing environments . 24

2.4 Defining extension functions . 25

2.5 Miscellaneous functions . 29

3 The xpattern package 31

3.1 Utilities powered by pattern matchers 31

3.2 Compiling pattern matchers dynamically 33

3.3 Applying pattern matchers . 38

3.4 Other functions . 39

3.5 Other variables . 40

1

Chapter 1

The xpath package

Plexippus XPath is an XPath 1.0 implementation for Common Lisp.

1.1 Using XPath

In this section:

• evaluate

• xpath

Almost all uses of XPath involve the evaluate function, which can parse, com-
pile, and invoke XPath expressions.

[Function]evaluate xpath context &optional unordered-p

Arguments

xpath — an XPath expression

context — an XPath context

unordered-p — specify true to get unordered node-set

Return Values

the result of evaluating xpath within the context

Details

Evaluates an XPath expression

2

xpath can be a string, a sexpr-based XPath epression or a compiled expression.
The context can be obtained using make-context . As an alternative, a node
can be specifed.

If unordered-p is false (default) and value being returned is a node-set , it
will be sorted using sort-node-set so its nodes will be in document order. If
unordered-p is true, the order of the nodes is unspecified. Unordered mode
can be significantly faster in some cases (and never slower).

See also

• make-context

• node-set

• sort-node-set

[Macro]xpath form

Arguments

form — a sexpr-based XPath form

Return Values

a list consisting of symbol XPATH and the form

Details

This macro is used to specify sexpr-based XPath expression for evaluate

See also

• evaluate

1.2 Compiling XPath dynamically

In this section:

• parse-xpath

• compile-xpath

3

compile-xpath allows the compilation of XPath into a closure ahead of time,
so that evaluate only needs to invoke that closure rather than having to re-
compile it first.

Although evaluate itself already performs caching of compiled closures, ex-
plicit precompilation can aid optimizations if one call site uses multiple XPath
expressions.

Explicit compilation using compile-xpath is also required when using custom
environment classes, since evaluate compiles expressions using the dynamic
environment only.

parse-xpath can be used to translate the standard string representation of
XPath into a Plexippus-specific sexp representation. Both compile-xpath and
evaluate accept sexps instead of strings.

[Function]parse-xpath str

Arguments

str — a string

Return Values

a s-expression-based XPath expression

Details

Parses a string-based XPath expression into s-expression-based one.

[Function]compile-xpath xpath &optional
(environment (make-dynamic-environment

dynamic-namespaces))

Arguments

xpath — an XPath expression

Return Values

a compiled XPath expression

Details

Compiles an XPath expression

The xpath expression is compiled using current environment if it isn’t com-
piled yet. xpath can be a string, a sexpr-based XPath epression or a compiled
expression. In the latter case xpath argument value itself is returned.

4

1.3 Type coercion

In this section:

• boolean-value

• string-value

• number-value

• node-set-value

These correspond to the XPath functions boolean(), string(), and number(). In
addition, node-set-value is provided, which turns nodes into node sets.

[Function]boolean-value value

Arguments

value — value of an XPath-supported type or an XML node

Return Values

an XPath boolean

Details

Returns the value of XPath boolean() function.

For XML nodes returns the value of XPath boolean() function applied to the
result of calling string-value for the specified value.

See also

• string-value

[Function]string-value value

Arguments

value — value of an XPath-supported type or an XML node

Return Values

5

an XPath string

Details

Returns the value of XPath number() function.

For XML nodes returns the value of xpath-protocol:node-text applied to the
specified value.

See also

• xpath-protocol:node-text

[Function]number-value value

Arguments

value — value of an XPath-supported type or an XML node

Return Values

an XPath number

Details

Returns the value of XPath number() function.

For XML nodes returns the value of XPath number() function applied to the
result of calling string-value for the specified value.

See also

• string-value

[Function]node-set-value value

Arguments

value — value of an XPath-supported type or an XML node

Return Values

a node set

6

Details

Returns the value of XPath node-set() function.

For XML nodes returns a node set consisting of the single node specified by
value.

1.4 The dynamic environment

In this section:

• with-namespaces

• with-variables

The default enviroment used by evaluate is the dynamic environment, backed
by information bound in dynamic variables. The following macros are used to
bind these variables. They have dynamic scope. (The dynamic environment
is currently not capable of dynamic declarations for variables, but can be used
with extension functions that are declared globally.)

(The XPATH-SYS defined an environment protocol for user-defined environ-
ment classes.)

[Macro]with-namespaces (&rest bindings) &body body

Arguments

bindings — bindings in the form (PREFIX VALUE). PREFIXes and VALUEs
are evaluated

Return Values

the tresult of evaluating body

Details

Provides namespace bindings for XPath compilation

Namespace bindings are used for compilation of XPath expressions. nil is equiv-
alent of ”” prefix. Bindings provided by this macro have dynamic scope.

[Macro]with-variables (&rest bindings) &body body

Arguments

7

file:xpath-sys.html

bindings — bindings in the form (QNAME VALUE). QNAMEs and VALUEs
are evaluated

Return Values

the tresult of evaluating body

Details

Provides bindings for XPath variables

Variable bindings are used for evaluation of compiled XPath expressions. Bind-
ings provided by this macro have dynamic scope.

1.5 The run-time context

In this section:

• context

• make-context

• context-node

• context-starting-node

• context-position

• context-size

Instead of passing a node to evaluate, user code can construct a full context
object.

The context object specifies values to be returned by position(), current(), and
last().

[Class]context

Superclasses

common-lisp:standard-object, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

None

Direct Slots

position —

8

node —

size —

starting-node —

Details

Represents XPath context

[Function]make-context node &optional (size 1) (position 1)
(starting-node node)

Arguments

node — an XML node

size — context size, a non-negative integer or a function without arguments
returning non-negative integer

position — context position, a positive integer

Details

Makes a context object.

See also

• context

[Function]context-node context

Arguments

context — an XPath context

Return Values

an XML node

Details

Returns the context node of the XPath context.

9

[Function]context-starting-node context

Arguments

context — an XPath context

Return Values

an XML node

Details

Returns the node for which the whole XPath expression is evaluated.

[Function]context-position context

Arguments

context — an XPath context

Return Values

a positive integer

Details

Returns the current position of the XPath context.

[Function]context-size context

Arguments

context — an XPath context

Return Values

a non-negative number

Details

Returns the size of context If the context size was specified as a function, the
result of calling that function is returned.

10

1.6 Node sets

In this section:

• first-node

• all-nodes

• map-node-set

• map-node-set-¿list

• do-node-set

• make-node-set-iterator

• node-set-iterator-end-p

• node-set-iterator-next

• node-set-iterator-current

• node-set-p

• node-set-empty-p

•

• list-¿node-set

• sort-node-set

Node sets are the XPath data type used to represent the results of evaluations
that select multiple nodes. As sets, they never contain duplicates.

In addition to the high-level functions defined here, the XPATH-SYS package
defined several low-level node set functions. Please also refer to the description
there for details on node set order.

[Function]first-node node-set

Arguments

node-set — a node-set

Return Values

a node-set or nil

Details

Returns the first node in the node-set or nil if it’s empty.

See also

11

file:xpath-sys.html

• node-set

[Function]all-nodes node-set

Arguments

node-set — a node-set

Return Values

a list of nodes

Details

Returns all nodes of the node-set as a list.

See also

• node-set

[Function]map-node-set func node-set

Arguments

func — a function

node-set — a node-set

Return Values

nil

Details

Calls func for each node in node-set

The operation is performed lazily, i.e. if it’s terminated via a non-local exit it
doesn’t necessarily cause the XPath engine to find out all nodes in the node-set
internally.

See also

• node-set

12

[Function]map-node-set->list func node-set

Arguments

func — a function

node-set — a node-set

Return Values

a list

Details

Calls func for each node in node-set and conses up a list of its return values

The operation is performed lazily, i.e. if it’s terminated via a non-local exit it
doesn’t necessarily cause the XPath engine to find out all nodes in the node-set
internally.

See also

• node-set

[Macro]do-node-set (var node-set &optional result) &body body

Arguments

var — symbol, a variable name

node-set — a node-set

result — a form

Return Values

the result of evaluating result

Details

Executes body with var bound to successive nodes in node-set

The operation is performed lazily, i.e. if it’s terminated via a non-local exit it
doesn’t necessarily cause the XPath engine to find out all nodes in the node-set
internally.

Returns nil if result form isn’t specified.

See also

13

• node-set

[Function]make-node-set-iterator node-set

Arguments

node-set — a node-set

Return Values

a node-set iterator

Details

Creates a node set iterator for node-set

Node set iterators can be used to iterate over node-sets. This can be done
without causing the XPath engine to find out all their nodes and using non-
local exits.

See also

• node-set

[Function]node-set-iterator-end-p iterator

Arguments

iterator — a node-set iterator returned by make-node-set-iterator

Return Values

a generalized boolean

Details

Returns true if iterator points to the end of its node set

See also

• make-node-set-iterator

14

[Function]node-set-iterator-next iterator

Arguments

iterator — a node-set iterator returned by make-node-set-iterator

Return Values

the value of iterator

Details

Advances iterator if it’s not at the end of its node set, does nothing otherwise.

See also

• make-node-set-iterator

[Function]node-set-iterator-current iterator

Arguments

iterator — a node-set iterator returned by make-node-set-iterator

Return Values

a node or nil

Details

Returns current node of iterator or nil if it’s at the end of its node set.

See also

• make-node-set-iterator

[Function]node-set-p object

Arguments

15

object — a value of any type

Return Values

a generalized boolean

Details

Returns true if object is a node-set

See also

• node-set

[Function]node-set-empty-p node-set

Arguments

node-set — a node-set

Return Values

a generalized boolean

Details

Returns true if node-set is empty

[Function]list->node-set list

Arguments

list — a list of nodes

Return Values

a node-set

Details

Makes a node-set from the list of nodes.

See also

16

• node-set

[Function]sort-node-set node-set

Arguments

node-set — a node set

Return Values

a sorted version of node-set

Details

Sorts the node-set according to document order.

1.7 Miscellaneous

In this section:

• with-plx-extensions

• xpath-error

Other useful functions, variables, and classes:

[Macro]with-plx-extensions &body body

Details

Binds plx prefix to Plexippus XPath extensions namespace.

The following functions are currently available:

plx:matches(string, pattern, flags?)

Returns true if string is matched by regular expression pattern, false other-
wise. Optional flags specify modifiers (i, m, s). CL-PPCRE is used as regular
expression engine.

plx:replace(string, pattern, replacement, flags?)

17

Returns string with all matches of regular expression pattern replaced with
replacement. Optional flags specify modifiers (i, m, s).

plx:current()

Returns a node-set consisting of one node which was specifed as context node
for expression evaluation. Analagous to current() function of XSLT.

plx:generate-id(node-set?)

Returns an alphanumeric string that uniquely identifies the first node of the
node-set (or context node if node-set isn’t specified) within its document.
Analagous to generate-id() of XSLT.

See also

• node-set

navigator

[Class]xpath-error

Superclasses

common-lisp:simple-error, common-lisp:simple-condition, common-lisp:error, common-
lisp:serious-condition, common-lisp:condition, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

None

Direct Slots

None

Details

The class of all xpath errors.

18

1.8 Other functions

[Function]evaluate-compiled compiled-xpath context &optional
unordered-p

Arguments

compiled-xpath — a compiled XPath expression

context — an XPath context

unordered-p — specify true to get unordered node-set

Return Values

the result of evaluating compiled-xpath within the context

Details

Evaluates a compiled XPath expression returned by compile-xpath

The context can be obtained using make-context . As an alternative, a node
can be specifed.

If unordered-p is false (default) and value being returned is a node-set , it
will be sorted using sort-node-set so its nodes will be in document order. If
unordered-p is true, the order of the nodes is unspecified. Unordered mode
can be significantly faster in some cases (and never slower).

See also

• compile-xpath

• make-context

• node-set

• sort-node-set

[Function]xpath-error fmt &rest args

Arguments

fmt — format control string

args — format arguments

19

Details

Signals the xpath-error condition with specified message.

See also

• xpath-error

1.9 Other classes

[Class]node-set

Superclasses

common-lisp:standard-object, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

None

Direct Slots

ordering —

pipe —

Details

Represents an XPath node set

1.10 Other variables

[Variable]*navigator*

No documentation string. Possibly unimplemented or incomplete.

20

Chapter 2

The xpath-sys package

The XPATH-SYS package provides an API for extensions to Plexippus XPath.

2.1 Pipes

In this section:

• make-pipe

• pipe-head

• pipe-tail

Pipes are lazy lists, inspired by their implementation in Norvig’s ’Paradigms of
Artificial Intelligence Programming’.

[Macro]make-pipe head tail

Arguments

head — pipe head (evaluated)

tail — tail expression

Return Values

a pipe

Details

Constructs a pipe (lazy list).

21

The head expression is evaluated immediatelly. The value of head will be re-
turned by pipe-head called for the pipe object returned by make-pipe. Evalua-
tion of tail expression is delayed until pipe-tail is called for the pipe returned
by this function. Evaluation of tail expression should produce a pipe or a list.

See also

• pipe-head

• pipe-tail

[Function]pipe-head pipe

Arguments

pipe — a pipe

Return Values

an object

Details

Returns the head of the pipe.

[Function]pipe-tail pipe

Arguments

pipe — a pipe

Return Values

an object

Details

Returns the tail of the list.

First time pipe-tail is called it causes pipe tail expression to be evaluated and
remembered for later calls.

22

2.2 Node sets

In this section:

• make-node-set

• pipe-of

Node sets are the XPath data type used to represent the results of evaluations
that select multiple nodes. As sets, they never contain duplicates. Conceptually,
they are unordered, with the most important order defined on them being the
document order.

As a data structure though, node sets are backed by a pipe, and the order of
elements in that pipe is well-documented: By default, the pipe of returned node
sets is sorted into document order. When unordered results are requested, the
order is usually not specified, but in some cases, are already sorted according
to the axis being queried, which is usually sorted either in document order,or
in reverse document order. See xpath:evaluate for the unordered argument.

[Function]make-node-set pipe &optional (ordering unordered)

Arguments

pipe — a pipe

ordering — one of :document-order, :reverse-document-order, :unordered

Return Values

a node set

Details

Makes a node set containing nodes from the pipe with specified ordering.

[Function]pipe-of node-set

Arguments

node-set — a node set

Return Values

a pipe

23

Details

Returns the pipe that contains the elements of the node-set.

2.3 Implementing environments

In this section:

• environment-find-namespace

• environment-find-variable

• environment-find-function

Environments provide compilation-time configuration for XPath. An environ-
ment is a CLOS object, which is queried by the compiler using generic functions
that users can implement on their own subclasses of xpath::environment .

The default environment class implements a ‘dynamic’ environment, backed by
information bound in dynamic variables, so that typical uses of XPath work
without special environment classes.

[Function]environment-find-namespace environment prefix

Arguments

environment — an XPath environment object

prefix — prefix part of a QName

Details

Returns namespace URI for specified prefix.

[Function]environment-find-variable environment local-name uri

Arguments

environment — an XPath environment object

local-name — local part of expanded-name of the function

uri — namespace URI of the function

Return Values

24

XPath variable ”thunk”

Details

Finds an XPath variable by local-name and uri.

XPath variable is represented by a ”thunk”. A ”thunk” is a function that takes
an instance of context as its argument and returns the value of one of XPath
types.

See also

• context

[Function]environment-find-function environment local-name uri

Arguments

environment — an XPath environment object

local-name — local part of expanded-name of the function

uri — namespace URI of the function

Return Values

an XPath function or nil if it cannot be found

Details

Finds an XPath function by local-name and uri.

XPath function is a Lisp function that takes zero or more ”thunks” as its ar-
guments (corresponding to XPath expressions passed as function arguments)
and returns a new ”thunk”. A ”thunk” is a function that takes an instance of
context as its argument and returns the value of one of XPath types.

See also

• context

2.4 Defining extension functions

In this section:

• define-extension

25

• define-xpath-function/lazy

• define-xpath-function/eager

• define-xpath-function/single-type

• find-xpath-function

XPath defines built-in functions in the empty namespace. Using the extension
API, user code can implement XPath functions addressed using other names-
paces.

[Macro]define-extension name uri &optional documentation

Arguments

name — the name of XPath extension (a symbol)

uri — URI corresponding to XPath extension (a string)

documentation — documentation string for the XPath extension

Details

Defines an XPath extension with specified name and uri.

An XPath extension is a collection of XPath functions that are defined us-
ing one of define-xpath-function/lazy , define-xpath-function/eager or
define-xpath-function/single-type

macros. In order to use the extension, one must bind a prefix string to its uri
using with-namespaces macro.

Example:

(defparameter *my-namespace* "http://example.net/my-xpath-extension")
(xpath-sys:define-extension

my-ext *my-namespace*
"My Extension")

(xpath-sys:define-xpath-function/single-type my-ext add-quotes string (string)
(concat "\"" string "\""))

(defun get-my-quoted-string(doc)
(with-namespaces (("my" *my-namespace*))
(evaluate "add-quotes(//some-element)" doc)))

See also

• define-xpath-function/lazy

• define-xpath-function/eager

26

• define-xpath-function/single-type

• with-namespaces

[Macro]define-xpath-function/lazy ext name args &body body

Arguments

ext — name of an XPath extension (a symbol)

name — XPath function name

args — XPath function arguments

Details

Defines an XPath function, ”lazy” style.

The body is evaluated during compilation of XPath expressions each time the
function being defined is referenced. It’s passed a list of ”thunks” corresponding
to XPath function arguments and should return a new ”thunk”. A ”thunk” is
a function that takes an XPath context as argument and returns value of one
of XPath types (string, boolean, number, node set).

Example:

(define-xpath-function/lazy my-ext my-if (v if-part else-part)
#’(lambda (ctx)

(if (boolean-value (funcall v ctx))
(funcall if-part ctx)
(funcall else-part ctx))))

See also

• context

• define-xpath-extension

• define-xpath-function/eager

• define-xpath-function/single-type

[Macro]define-xpath-function/eager ext name args &body body

Arguments

27

ext — name of an XPath extension (a symbol)

name — XPath function name

args — XPath function arguments

Details

Defines an XPath function, ”eager” style.

The body is evaluated during evaluation of XPath expressions each time the
function being defined is called. It’s passed a list of values corresponding to
XPath function arguments and should return a value of one of XPath types
(string, boolean, number, node set).

Example:

(define-xpath-function/eager my-ext join (delim node-set)
(reduce (lambda (a b) (concatenate ’string a delim b))

(map-node-set->list #’string-value node-set)))

See also

• define-xpath-extension

• define-xpath-function/lazy

• define-xpath-function/single-type

[Macro]define-xpath-function/single-type ext name type args
&body body

Arguments

ext — name of an XPath extension (a symbol)

name — XPath function name

args — XPath function arguments

Details

Defines an XPath function, ”eager” style with automatic type conversion.

The body is evaluated during evaluation of XPath expressions each time the
function being defined is called. It’s passed a list of values corresponding to
XPath function arguments and should return a value of one of XPath types
(string, boolean, number, node set). Argument values are automatically con-
verted to specified XPath type.

Example:

28

(xpath-sys:define-xpath-function/single-type my-ext add-quotes string (string)
(concat "\"" string "\""))

See also

• define-xpath-extension

• define-xpath-function/lazy

• define-xpath-function/eager

[Function]find-xpath-function local-name uri

Arguments

local-name — local part of the function name

uri — namespace URI of the function

Return Values

an XPath function object

Details

Performs an XPath function lookup using standard lookup rules

All defined extensions for the namespace specified by uri are scanned for func-
tion with specified local-name.

2.5 Miscellaneous functions

In this section:

• get-node-id

Other useful functions:

[Function]get-node-id node-or-node-set

Arguments

node-or-node-set — a node-set or a single XML node

29

Return Values

an alphanumeric string

Details

Generates an unique identifier for the first node node-set (or, if a node is
specified, for that node).

This function is similar to the generate-id() XSLT function, but its results are
unique only within its document, whereas XSLT also prepends an ID designating
the document.

See also

• node-set

30

Chapter 3

The xpattern package

The XPATTERN package implements pattern matching compatible with XSLT
1.0.

3.1 Utilities powered by pattern matchers

In this section:

• node-matches-p

• pattern-case

• pattern-ecase

The following convenience functions and macros use patterns. They are imple-
mented using the lower-level functions listed below.

[Function]node-matches-p node pattern-expression

Arguments

node — any node implementing the XPath protocol

pattern-expression — a string or s-expression

Return Values

a boolean

Details

Determine whether node matches the pattern expression.

31

The expression is compiled using the dynamic environment.

See also

• with-namespaces

• with-variables

• pattern-case

• pattern-ecase

[Macro]pattern-case node &body clauses

Arguments

node — any node implementing the XPath protocol

clauses — cases of the form (expression &rest body)

Return Values

The value returned by the matching clause body, or nil.

Details

Match a node against static expressions.

Evaluates node, and matches them against the specified XSLT patterns. The
first matching pattern will be chosen, i.e. earlier clauses have higher priority
that later clauses.

Expressions are compiled using the dynamic environment.

As a special case, the last expression can be t, in which case it matches uncon-
ditionally.

See also

• with-namespaces

• pattern-ecase

• node-matches-p

• with-variables

32

[Macro]pattern-ecase node &rest clauses

Arguments

node — any node implementing the XPath protocol

clauses — cases of the form (expression &rest body)

Return Values

The value returned by the matching clause body.

Details

Match a node against static expressions.

Evaluates node, and matches them against the specified XSLT patterns. The
first matching pattern will be chosen, i.e. earlier clauses have higher priority
that later clauses.

Expressions are compiled using the dynamic environment.

If no clause matches, an error will be signalled.

See also

• with-namespaces

• pattern-case

• node-matches-p

• with-variables

3.2 Compiling pattern matchers dynamically

In this section:

• pattern

• pattern-value

• pattern-priority

• compute-patterns

• make-pattern-matcher

• make-pattern-matcher*

33

Pattern are represented as objects:

[Class]pattern

Superclasses

common-lisp:structure-object, sb-pcl::slot-object, common-lisp:t

Documented Subclasses

None

Details

Represents a parsed XSLT pattern.

Returned by

• compute-patterns

Slot Access Functions

• pattern-value

• pattern-priority

See also

• make-pattern-matcher

[Function]pattern-value instance

Arguments

instance — a pattern

Return Values

an object

34

Details

Return the user-specified value that will be returned by pattern matchers if this
pattern matches.

See also

• pattern

• matching-value

• matching-values

[Function]pattern-priority instance

Arguments

instance — a pattern

Return Values

an integer

Details

Return the priority of this pattern. When several patters would match the same
node, the pattern matcher will only consider the patterns that have the highest
priority.

See also

• pattern

• matching-value

• matching-values

Use compute-patterns to parse a pattern expression into pattern objects:

[Function]compute-patterns expression priority value environment

Arguments

expression — a string or s-expression

35

priority — an integer

value — an object

environment — an environment

Return Values

a list of pattern s

Details

Parse an XSLT pattern expression into one or more pattern objects.

Parses an expression, resolves its namespace-, variable-, and function-references
using the specified environment, and creates a pattern object for the expression
(if it does not use a union) or one pattern object for each sub-expression that
is being joined into the union.

The specified priority is used as the pattern-priority , and the specified
value is used as the pattern-value .

See also

• pattern

• pattern-priority

• pattern-value

• make-pattern-matcher*

• make-pattern-matcher

make-pattern-matcher builds a matcher functions from multiple pattern ob-
jects. The matcher will find the highest-priority match among them.

[Function]make-pattern-matcher patterns

Arguments

patterns — a list of pattern s

Return Values

the pattern matcher, a function

Details

Create a pattern matcher that distinguishes between multiple patterns.

36

This function combines several patterns, and creates a matcher function for
use with matching-value or matching-values . The matcher function will
compare a node against each pattern, and find the highest-priority pattern or
patterns that match the node.

See also

• pattern

• matching-value

• matching-values

• compute-patterns

[Function]make-pattern-matcher* expression environment

Arguments

expression — a string or s-expression

environment — an environment

Return Values

the pattern matcher, a function

Details

Create a pattern matcher for a single pattern.

This function is a convenience wrapper around compute-patterns and make-pattern-matcher
.

The resulting matcher will return T if the specified expression matches, or
NIL if it doesn’t.

See also

• compute-patterns

• make-pattern-matcher

• compute-patterns

• matching-value

• matching-values

37

3.3 Applying pattern matchers

In this section:

• matching-value

• matching-values

To invoke a matcher created by make-pattern-matcher, use matching-value
or matching-values:

[Function]matching-value matcher node &optional (default nil)

Arguments

matcher — a pattern matching function

node — any node implementing the XPath protocol

default — an object

Return Values

an object

Details

Apply a pattern matcher to node, and return exactly one value.

For use with matcher functions that have been returned by make-pattern-matcher
or a higher-level function like make-pattern-matcher* .

If exactly one pattern matches, or several patterns for the same value match,
the user-specified values as determined by pattern-value

will be returned by this function.

If no pattern matches, default will be returned instead.

If more than one pattern of highest priority and different values match, an
xpath-error will be signalled.

See also

• make-pattern-matcher

• make-pattern-matcher*

• pattern-value

• node-matches-p

38

• pattern-case

• pattern-ecase

[Function]matching-values matcher node

Arguments

matcher — a pattern matching function

node — any node implementing the XPath protocol

Return Values

an object

Details

Apply a pattern matcher to node, and return one or more matching values.

For use with matcher functions that have been returned by make-pattern-matcher
or a higher-level function like make-pattern-matcher* .

The resulting list will contain the user-specified values as returned by pattern-value
on the patterns for this matcher, in any order. Duplicates under eql will have
been removed from the list.

See also

• make-pattern-matcher

• make-pattern-matcher*

• pattern-value

• node-matches-p

• pattern-case

• pattern-ecase

3.4 Other functions

[Function]parse-pattern-expression str

Arguments

39

str — a string

Return Values

a s-expression-based pattern expression

Details

Parses an XSLT pattern into an s-expression.

3.5 Other variables

[Variable]*allow-variables-in-patterns*

Details

If set to T, predicates in patterns are permitted to reference variables using $var
syntax. If set to NIL, such variable references signal a compilation-time error.
The default is T. Bind this variable to NIL to enable compatibility with XSLT
1.0.

See also

• compute-patterns

40

Index

allow-variables-in-patterns *allow-variables-in-patterns*
variable, 40

navigator *navigator* variable, 20
all-nodes all-nodes function, 12
boolean-value boolean-value function,

5
compile-xpath compile-xpath function,

4
compute-patterns compute-patterns func-

tion, 35
context context class, 8
context-node context-node function,

9
context-position context-position func-

tion, 10
context-size context-size function, 10
context-starting-node context-starting-node

function, 10
define-extension define-extension macro,

26
define-xpath-function/eager define-xpath-function/eager

macro, 27
define-xpath-function/lazy define-xpath-function/lazy

macro, 27
define-xpath-function/single-type define-xpath-function/single-type

macro, 28
do-node-set do-node-set macro, 13
environment-find-function environment-find-function

function, 25
environment-find-namespace environment-find-namespace

function, 24
environment-find-variable environment-find-variable

function, 24
evaluate evaluate function, 2
evaluate-compiled evaluate-compiled

function, 19
find-xpath-function find-xpath-function

function, 29
first-node first-node function, 11
get-node-id get-node-id function, 29

list-¿node-set list->node-set function,
16

make-context make-context function,
9

make-node-set make-node-set function,
23

make-node-set-iterator make-node-set-iterator
function, 14

make-pattern-matcher make-pattern-matcher
function, 36

make-pattern-matcher* make-pattern-matcher*
function, 37

make-pipe make-pipe macro, 21
map-node-set map-node-set function,

12
map-node-set-¿list map-node-set->list

function, 13
matching-value matching-value func-

tion, 38
matching-values matching-values func-

tion, 39
node-matches-p node-matches-p func-

tion, 31
node-set node-set class, 20
node-set-empty-p node-set-empty-p func-

tion, 16
node-set-iterator-current node-set-iterator-current

function, 15
node-set-iterator-end-p node-set-iterator-end-p

function, 14
node-set-iterator-next node-set-iterator-next

function, 15
node-set-p node-set-p function, 15
node-set-value node-set-value func-

tion, 6
number-value number-value function,

6
parse-pattern-expression parse-pattern-expression

function, 39
parse-xpath parse-xpath function, 4
pattern pattern class, 34

41

pattern-case pattern-case macro, 32
pattern-ecase pattern-ecase macro, 33
pattern-priority pattern-priority func-

tion, 35
pattern-value pattern-value function,

34
pipe-head pipe-head function, 22
pipe-of pipe-of function, 23
pipe-tail pipe-tail function, 22
sort-node-set sort-node-set function,

17
string-value string-value function, 5
with-namespaces with-namespaces macro,

7
with-plx-extensions with-plx-extensions

macro, 17
with-variables with-variables macro,

7
xpath xpath macro, 3
xpath-error xpath-error class, 18
xpath-error xpath-error function, 19

42

	The xpath package
	Using XPath
	Compiling XPath dynamically
	Type coercion
	The dynamic environment
	The run-time context
	Node sets
	Miscellaneous
	Other functions
	Other classes
	Other variables

	The xpath-sys package
	Pipes
	Node sets
	Implementing environments
	Defining extension functions
	Miscellaneous functions

	The xpattern package
	Utilities powered by pattern matchers
	Compiling pattern matchers dynamically
	Applying pattern matchers
	Other functions
	Other variables

